DPP - 2 (Kinematics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails

https://youtu.be/TQmJSIfjdDE

https://physicsaholics.com/note/notesDetalis/85

Written Solution on Website:-

Video Solution on YouTube:-

Q 1. A dog walking to the right with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ sees a cat and speeds up with a constant rightward acceleration of magnitude $12 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity of the dog after speeding up for 3.0 m ?
(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $8.6 \mathrm{~m} / \mathrm{s}$
(c) $12.6 \mathrm{~m} / \mathrm{s}$
(d) $16.6 \mathrm{~m} / \mathrm{s}$

Q 2. A particle moving in straight line experience constant acceleration for 20 second after starting from rest. If it travel a distance S_{1} in the first 10 seconds and distance S_{2} in the next 10 seconds then find the relation between S_{1} and S_{2} :
(a) $S_{1}=3 S_{2}$
(b) $S_{1}=\frac{3}{2} S_{2}$
(c) $S_{2}=3 S_{1}$
(d) $S_{2}=\frac{3}{2} S_{1}$

Q 3. A car travels a distance 100 m with a constant acceleration and average velocity of $20 \mathrm{~m} / \mathrm{s}$. The final velocity acquired by the car is $25 \mathrm{~m} / \mathrm{s}$. Find the initial velocity.
(a) $15 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $10 \mathrm{~m} / \mathrm{s}$
(d) zero

Q 4. A body starting from rest is travelling on a straight road with constant non-zero acceleration. If the speeds after covering distances S_{1} and $S_{2}\left(\right.$ after $\left.S_{1}\right)$ are V_{1} and V_{2} respectively. If $\frac{V_{2}}{V_{1}}=2$, then $\frac{S_{2}}{S_{1}}=N$. Find N ?
(a) 1
(b) 2
(c) $1 / 2$
(d) 3

Q 5. A bike moving along a straight road covers 35 m in the 4 th second and 40 m in the 5th second. What is its initial velocity: (if the acceleration is assumed to be uniform)?
(a) $5 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(a) (c) $17.5 \mathrm{~m} / \mathrm{s}$
(d) $15.5 \mathrm{~m} / \mathrm{s}$

Q 6. A truck moving on a straight road with constant acceleration covers the distance between two points 180 m apart in 6 seconds. Its speed as it passes the second points $45 \mathrm{~m} / \mathrm{s}$. Find its speed when it was at the first point:
(a) $5 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$

Q 7. A car accelerates uniformly from $18 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in 5 seconds. Calculate the acceleration of truck:
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $1 \mathrm{~km} / \mathrm{h}^{2}$
(c) $3 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.5 \mathrm{~m} / \mathrm{s}^{2}$

Q 8. A body starts from rest and travels with a uniform acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ and then decelerates at a uniform rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ again to come to rest. Total time of travel is 10 sec . find the maximum velocity during the journey:
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $27 \mathrm{~m} / \mathrm{s}$

Q 9. Consider a train which can accelerate with an acceleration of $20 \mathrm{~cm} / s^{2}$ and slow down with deceleration of $100 \mathrm{~cm} / \mathrm{s}^{2}$. Find the minimum time for the train to travel between the stations 2.7 km apart:
(a) 90 s
(b) 180 s
(c) 160 s
(d) 240 s

Q 10. An automobile travelling with the speed of $72 \mathrm{~km} / \mathrm{h}$, is stopped within a distance of 20 m , by applying brakes. Determine the distance travelled in the first second:
(a) 10 m
(b) 25 m
(c) 15 m
(d) 35 m

Q 11. A body starting from rest is moving with a uniform acceleration of $8 \mathrm{~m} / \mathrm{s}^{2}$. Then the distance travelled by it in 5th second will be:
(a) 40 m
(b) 36 m
(c) 100 m
(d) zero

Q 12. A motor cycle moving with speed of $15 \mathrm{~m} / \mathrm{s}$ is subject to an acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ in the direction of motion. Calculate the speed of motorcycle after 10 second,
(a) $7 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $13 \mathrm{~m} / \mathrm{s}$
(d) $17 \mathrm{~m} / \mathrm{s}$

Answer Key

Q.1) b	Q.2) \mathbf{c}	Q.3) a	Q.4) d	Q.5) \mathbf{c}	
Q.6) \mathbf{c}	Q.7) a	Q.8) b	Q.9) \mathbf{b}	Q.10) \mathbf{c}	
Q.11) b	Q.12) d				

